Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases.
نویسندگان
چکیده
The PCR-single-strand conformation polymorphism (SSCP) technique was used to assess the diversity and distribution of Rieske nonheme iron oxygenases of the toluene/biphenyl subfamily in soil DNA and bacterial isolates recovered from sites contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX). The central cores of genes encoding the catalytic alpha subunits were targeted, since they are responsible for the substrate specificities of these enzymes. SSCP functional genotype fingerprinting revealed a substantial diversity of oxygenase genes in three differently BTEX-contaminated soil samples, and sequence analysis indicated that in both the soil DNA and the bacterial isolates, genes for oxygenases related to the isopropylbenzene (cumene) dioxygenase branch of the toluene/biphenyl oxygenase subfamily were predominant among the detectable genotypes. The peptide sequences of the two most abundant alpha subunit sequence types differed by only five amino acids (residues 258, 286, 288, 289, and 321 according to numbering in cumene dioxygenase alpha subunit CumA1 of Pseudomonas fluorescens IP01). However, a strong correlation between sequence type and substrate utilization pattern was observed in isolates harboring these genes. Two of these residues were located at positions contributing, according to the resolved crystal structure of cumene dioxygenase from Pseudomonas fluorescens IP01, to the inner surface of the substrate-binding pocket. Isolates containing an alpha subunit with isoleucine and leucine at positions 288 and 321, respectively, were capable of degrading benzene and toluene, whereas isolates containing two methionine substitutions were found to be incapable of degrading toluene, indicating that the more bulky methionine residues significantly narrowed the available space within the substrate-binding pocket.
منابع مشابه
Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase.
Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of bi...
متن کاملThe broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation.
The chlorobenzene degradation pathway of Pseudomonas sp. strain P51 is an evolutionary novelty. The first enzymes of the pathway, the chlorobenzene dioxygenase and the cis-chlorobenzene dihydrodiol dehydrogenase, are encoded on a plasmid-located transposon Tn5280. Chlorobenzene dioxygenase is a four-protein complex, formed by the gene products of tcbAa for the large subunit of the terminal oxyg...
متن کاملDevelopment of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR.
Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primers that can successfully ampli...
متن کاملA survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil.
Total community DNA from 29 noncontaminated soils and soils impacted by petroleum hydrocarbons and chloro-organics from Antarctica and Brazil were screened for the presence of nine catabolic genes, encoding alkane monooxygenase or aromatic dioxygenases, from known bacterial biodegradation pathways. Specific primers and probes targeting alkane monooxygenase genes were derived from Pseudomonas pu...
متن کاملپاکسازی بیولوژیکی خاکهای آلوده به اتیل بنزن, تولوئن و نفتالین
Background & Objective: Aromatic hydrocarbons are produced by incomplete combustion of fossil fuels and pollute the soil following the emission into the atmosphere by precipitation. Numerous studies suggest that microbial inoculation has contributed to biodegradation of aromatic hydrocarbons. However, other studies have not confirmed the efficacy of this procedure in biodegradation. Regarding t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2006